Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Near-infrared semiconductor-nanostructured light detectors

Identifieur interne : 002938 ( Main/Repository ); précédent : 002937; suivant : 002939

Near-infrared semiconductor-nanostructured light detectors

Auteurs : RBID : Pascal:12-0107129

Descripteurs français

English descriptors

Abstract

Novel nanostructured III-V semiconductor devices are investigated for light detection in the near infrared spectral region. Single-electron memories based on site-controlled InAs quantum dots embedded in a GaAs/AlGaAs quantum-wire transistor were fabricated and studied. By using a nanohole structure template on a modulation-doped GaAs/AlGaAs heterostructure, two single InAs quantum dots were centrally positioned in a quantum-wire transistor so that pronounced shifts of the transistor threshold occur by charging of the QDs with single electrons. Single-electron read and write functionalities up to room temperature were observed and the memory function can be also controlled by light with a wavelength in the telecommunication range. Furthermore, AlGaAs/GaAs/AlGaAs double barrier resonant tunneling diodes (RTD) with an embedded GaInNAs absorption layer have been fabricated for telecom wavelength light detection at room temperature. The absorption layer was lattice matched grown within the GaAs system of the RTD. We demonstrate that the devices exhibit typical RTDs characteristic and they are light sensitive at the telecom wavelength 1.3 μm in the order of just a few nW. Routes to further reduce the detection limit are discussed whereas the envisaged devices have prospects to deliver sensitivities approaching the quantum limit.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:12-0107129

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Near-infrared semiconductor-nanostructured light detectors</title>
<author>
<name sortKey="Hofling, S" uniqKey="Hofling S">S. Höfling</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gopfert, S" uniqKey="Gopfert S">S. Göpfert</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hartmann, F" uniqKey="Hartmann F">F. Hartmann</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Schneider, C" uniqKey="Schneider C">C. Schneider</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Bisping, D" uniqKey="Bisping D">D. Bisping</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Press, D" uniqKey="Press D">D. Press</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Edward L. Ginzton Laboratory, Stanford University</s1>
<s2>Stanford, California 94305</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Stanford, California 94305</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kamp, M" uniqKey="Kamp M">M. Kamp</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Worschech, L" uniqKey="Worschech L">L. Worschech</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
<author>
<name sortKey="Forchel, A" uniqKey="Forchel A">A. Forchel</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<placeName>
<region type="land" nuts="1">Bavière</region>
<region type="district" nuts="2">District de Basse-Franconie</region>
<settlement type="city">Wurtzbourg</settlement>
</placeName>
<orgName type="university">Université de Wurtzbourg</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">12-0107129</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 12-0107129 INIST</idno>
<idno type="RBID">Pascal:12-0107129</idno>
<idno type="wicri:Area/Main/Corpus">002127</idno>
<idno type="wicri:Area/Main/Repository">002938</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium Arsenides</term>
<term>Aluminium arsenides</term>
<term>Ambient temperature</term>
<term>Binary compounds</term>
<term>Detection limit</term>
<term>Gallium Arsenides</term>
<term>Heterostructures</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Infrared detectors</term>
<term>Nanostructures</term>
<term>Radiation detectors</term>
<term>Remote sensing</term>
<term>Ternary compounds</term>
<term>Tunnel effect</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet tunnel</term>
<term>Détecteur rayonnement</term>
<term>Détecteur IR</term>
<term>Télédétection</term>
<term>Température ambiante</term>
<term>Nanostructure</term>
<term>Hétérostructure</term>
<term>Composé binaire</term>
<term>Indium Arséniure</term>
<term>Composé ternaire</term>
<term>Aluminium Arséniure</term>
<term>Gallium Arséniure</term>
<term>Semiconducteur III-V</term>
<term>Arséniure d'aluminium</term>
<term>Limite détection</term>
<term>InAs</term>
<term>GaAs</term>
<term>As In</term>
<term>As Ga</term>
<term>Al As Ga</term>
<term>AlGaAs</term>
<term>AlGaAs/GaAs</term>
<term>0130C</term>
<term>0757K</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Télédétection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Novel nanostructured III-V semiconductor devices are investigated for light detection in the near infrared spectral region. Single-electron memories based on site-controlled InAs quantum dots embedded in a GaAs/AlGaAs quantum-wire transistor were fabricated and studied. By using a nanohole structure template on a modulation-doped GaAs/AlGaAs heterostructure, two single InAs quantum dots were centrally positioned in a quantum-wire transistor so that pronounced shifts of the transistor threshold occur by charging of the QDs with single electrons. Single-electron read and write functionalities up to room temperature were observed and the memory function can be also controlled by light with a wavelength in the telecommunication range. Furthermore, AlGaAs/GaAs/AlGaAs double barrier resonant tunneling diodes (RTD) with an embedded GaInNAs absorption layer have been fabricated for telecom wavelength light detection at room temperature. The absorption layer was lattice matched grown within the GaAs system of the RTD. We demonstrate that the devices exhibit typical RTDs characteristic and they are light sensitive at the telecom wavelength 1.3 μm in the order of just a few nW. Routes to further reduce the detection limit are discussed whereas the envisaged devices have prospects to deliver sensitivities approaching the quantum limit.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>8154</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Near-infrared semiconductor-nanostructured light detectors</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Infrared remote sensing and instrumentation XIX : 21-22 August 2011, San Diego, California, United States</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>HÖFLING (S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GÖPFERT (S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HARTMANN (F.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SCHNEIDER (C.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BISPING (D.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>PRESS (D.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KAMP (M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WORSCHECH (L.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>FORCHEL (A.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>STROJNIK (Marija)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>PAEZ (Gonzalo)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Technische Physik, Universität Würzburg, Physikalisches Institut and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Am Hubland</s1>
<s2>97074 Würzburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
<sZ>9 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Edward L. Ginzton Laboratory, Stanford University</s1>
<s2>Stanford, California 94305</s2>
<s3>USA</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>81540G.1-81540G.8</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham Wash.</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8764-3</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174767640110</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2012 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>28 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>12-0107129</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Novel nanostructured III-V semiconductor devices are investigated for light detection in the near infrared spectral region. Single-electron memories based on site-controlled InAs quantum dots embedded in a GaAs/AlGaAs quantum-wire transistor were fabricated and studied. By using a nanohole structure template on a modulation-doped GaAs/AlGaAs heterostructure, two single InAs quantum dots were centrally positioned in a quantum-wire transistor so that pronounced shifts of the transistor threshold occur by charging of the QDs with single electrons. Single-electron read and write functionalities up to room temperature were observed and the memory function can be also controlled by light with a wavelength in the telecommunication range. Furthermore, AlGaAs/GaAs/AlGaAs double barrier resonant tunneling diodes (RTD) with an embedded GaInNAs absorption layer have been fabricated for telecom wavelength light detection at room temperature. The absorption layer was lattice matched grown within the GaAs system of the RTD. We demonstrate that the devices exhibit typical RTDs characteristic and they are light sensitive at the telecom wavelength 1.3 μm in the order of just a few nW. Routes to further reduce the detection limit are discussed whereas the envisaged devices have prospects to deliver sensitivities approaching the quantum limit.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B00G57K</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet tunnel</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Tunnel effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Détecteur rayonnement</s0>
<s5>09</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Radiation detectors</s0>
<s5>09</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Détecteur IR</s0>
<s5>11</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Infrared detectors</s0>
<s5>11</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Télédétection</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Remote sensing</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Nanostructure</s0>
<s5>47</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Nanostructures</s0>
<s5>47</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>48</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>48</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>52</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Aluminium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Aluminium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>53</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>54</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>61</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>61</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Arséniure d'aluminium</s0>
<s2>NK</s2>
<s5>62</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Aluminium arsenides</s0>
<s2>NK</s2>
<s5>62</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Limite détection</s0>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Detection limit</s0>
<s5>63</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Límite detección</s0>
<s5>63</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>GaAs</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>As In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>As Ga</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Al As Ga</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>AlGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>AlGaAs/GaAs</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>0757K</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fN21>
<s1>079</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Infrared remote sensing and instrumentation. Conference</s1>
<s2>19</s2>
<s3>San Diego CA USA</s3>
<s4>2011-08-21</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002938 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002938 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:12-0107129
   |texte=   Near-infrared semiconductor-nanostructured light detectors
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024